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Abstract. The objective of this work is the numerical simulation of the two-dimensional laminar flow over a circular cylinder with a 
forced normal oscillation in order to asset the effect of different combinations of the cylinder’s maximum linear velocity and 
angular frequency on the dynamic response of the system in terms of the resultant aerodynamic coefficients. The system of equations 
is written using a non-inertial frame of reference that is fixed to the oscillating circular cylinder. The effect of this motion is 
accounted by the introduction of pseudo-force and pseudo-work terms in the right-hand side of the compressible Navier-Stokes 
equations. These equations are numerically solved using a finite volume discretization, and the fluxes of mass, momentum and total 
energy are evaluated using the anti-symmetric form of Ducros’ fourth-order numerical method. The time marching is achieved 
using the third-order Runge-Kutta method proposed by Shu. The linear amplitude of vertical motion is defined as sinusoidal in time 
with an angular frequency tied to the simulated vortex-emission frequency of the static circular cylinder. The system response to 
different combinations of velocities and frequencies showed different kinds of vortex systems topologies and different behaviors of 
the unsteady aerodynamic coefficients. These responses were periodic and symmetric, periodic and anti-symmetric, pre-chaotic and 
even chaotic. 
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1. Introduction 

 
The main purpose of the present work is the numerical simulation of the laminar flow over a circular cylinder 

submitted to a forced normal oscillation. Flows over circular cylinders are present in several areas of engineering, as 
structural design, especially high towers and transmission cables of electrical energy, that are usually submitted to 
strong winds, offshore structures, thermo-fluids, aerospace sciences, where the landing gear, for example, is commonly 
submitted to strong winds and aerodynamic forces, among others. These kinds of flows, as they generate vortex-streets, 
induce unsteady aerodynamic forces over the structure capable of developing oscillation motions that can even destruct 
the structure by fracture. Being so, a good understanding of the vortex- street topology and the behavior of the unsteady 
aerodynamics coefficients, is essential. 

Previous work, Jared et al (1997), showed the behavior of the flow over a static circular cylinder in a considerable 
range of Reynolds number using numerical simulations that had laminar model and also turbulent models. Blackburn 
and Henderson (1999), showed in their work an analysis of the laminar flow over an oscillating circular cylinder in 
cross flow, fixing the Reynolds number to 500 and varying the ratio between the oscillation frequency of the cylinder 
and the natural vortex-emission frequency. The main objective of their work was to determine how this variation 
changes the aerodynamic forces utilizing an incompressible formulation and analyzing only the near-wake region. 

In order to simulate the normal oscillation of the circular cylinder using a compressible formulation and analyzing 
the effect of different combinations of the cylinder’s maximum linear velocity and angular frequency on the dynamic 
response of the system in terms of the resultant aerodynamic coefficients, the compressible Navier-Stokes equations are 
modified in this work using the concept of pseudo-forces and pseudo-work in order to represent the oscillation of the 
cylinder from a non-inertial frame of reference. They are solved using Ducros’ fourth-order skew-symmetric scheme 
for calculating the fluxes in a finite-volume discretization in conjunction with a third-order Runge-Kutta time-marching 
method, as proposed by Bobenrieth Miserda and Mendonça (2005). 

 
2. Mathemetical Model 

 
The system of equation utilized in the present work is written using a non inertial frame of reference fixed to the 

oscillating circular cylinder. The effect of this motion is accounted by a pseudo-force term in the right-hand side of the 
momentum equation that acts as a body force, Batchelor (1983). In similar manner, the work done by this pseudo-force 
is accounted by a pseudo-work term in the right-hand side of the energy equation. With these considerations, the 
nondimensional form of the Navier-Stokes equations can be written as: 
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In the equations above all the variables are in a nondimensional form: ρ  is the density, t  is the temporal 

coordinate, is the i-direction component of the velocity vector, is the i-direction spatial coordinate,  is the 

pressure, 
iu ix p

ijτ  is the stress tensor, is the pseudo-force due to the oscillating motion,  is the total energy per unit of 

mass and  is the heat-flow density in the i-direction 
if Te

ixq
The nondimensional form of the flow variables and properties are obtained using the following relations: 
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where the asterisk denotes dimensional quantities and  is the i-direction spatial coordinate,  is the cylinder’s 

diameter,  is the undisturbed velocity magnitude,  is the temporal coordinate,  is the pressure,  is the 

density,  is the density of the undisturbed flow,  is the total energy per unit of mass, 

*
ix *d

*
∞U *t *p *ρ

*
∞ρ

*
Te μ  is the nondimensional 

dynamic viscosity  is the dynamic viscosity  is the dynamic viscosity of the undisturbed flow,  is the 

nondimensional internal energy per unit mass,  is the internal energy per unit mass,  is the nondimensional kinetic 
energy per unit mass,  is the kinetic energy per unit mass,  is the nondimensional specific heat at constant volume 

 is the specific heat at constant volume, T  is the nondimensional temperature 

*μ *
∞μ e

*e ke
*

ke vc
*
vc *T  is the temperature and  is the 

temperature of the undisturbed flow. The nondimensional viscous stress tensor is given by 

*
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where  is the nondimensional rate-of-strain tensor, ijS ijδ  is the Kronecker delta and the Reynolds number is defined as 
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The total energy is given by the sum of the internal and kinetic specific energy as 
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and the nondimensional heat flux density, where γ  is the specific heat ratio, is given by 
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In Eq. (8), M  is the Mach number and Pr  is the Prandtl number, being defined as 
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where  is the specific gas constant,  is the specific heat at constant pressure and  is the thermal conductivity of 
the undisturbed flow. 
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In the present work, the Prandtl number is assumed to be a constant with the value . Being so, for a 
thermally and calorically perfect gas, the nondimensional equation of state assume the following form 

72.0Pr =
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The nondimensional molecular viscosity is obtained using Sutherland’s formula 
 

( ) .,, *

*
2

2
*
1*

21*

1
2

2/3

1
∞∞

∞ =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+
=

T
CCCTC

CT
TC

μ
μ        (12) 

 
where  is the nondimensional first gas constant in Sutherland’s formula,  is the first gas constant in Sutherland’s 

formula,  is the nondimensional second gas constant in Sutherland’s formula and  is the second gas constant in 
Sutherland’s formula. 

1C *
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As the primary objective of this work is to analyze the effect of the oscillating motion over the resulting 
aerodynamic forces, the pseudo-force,  that appears in Equations (2) and (3), accounts for this motion when the 
Navier-Stokes equations are written for a non-inertial frame or reference. The imposed motion has a sinusoidal linear 
amplitude in time and the components of the pseudo-force,  are given by 

if

if
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where the nondimensional maximum amplitude,  and angular frequency,,iA ,iω  are defined as 
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with *A  and  being the maximum amplitude of motion and angular frequency of the sinusoidal motion respectively. *ω

The boundary conditions at the wall of the circular cylinder are a no-slip condition for the velocity field, an 
adiabatic wall for the temperature field and a null gradient in the normal direction at the wall for the pressure field. 

 
3. Numerical Method 

 
Since the geometry of interest is a circular cylinder and the flow is laminar, the two-dimensional form of the 

Navier-Stokes equations is used. In order to numerically solve these equations using a finite volume approach, 
Equations (1), (2) and (3) are written in the following vector form, Anderson et al. (1983): 
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where U is the nondimensional conservative-variables vector, E and F are nondimensional flux vectors and R is the 
nondimensional vector associated with the oscillating motion. The first three vectors are given by 
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where  is the nondimensional x-direction component of the velocity vector and u v  is the nondimensional y-direction 
component of the velocity vector. 

The oscillating motion of the cylinder in this work is imposed in the y-direction, and consequently, the R vector is 
defined as: 
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Defining the flux tensor  as Π
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Equation (15) can now be written as 
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Integrating Eq. (19) over the control volume V, and applying the divergence theorem to the first term of right-hand 

side results 
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where S is the surface of control an n is the normal unit vector. Defining the volumetric mean of vectors U and R in the 
control volume V as 
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Equation (20) can be written as 
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For the volume , the first-order approximation of the temporal derivative is given by ),( ji
 

( )tO
tt

ji

ji

Δ+
Δ

Δ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ,

,

UU
∂
∂

       (23) 

 
where ji ,UΔ  is the variation of the nondimensional conservative-variables vector and tΔ  is the nondimensional time 
step. The temporal approximation of Eq. (22) for a quadrilateral and two-dimensional control volume is 
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where 21+iS  is the common surface between volume  and volume ),( ji ),1( ji + . Defining the flux of tensor Π  over 

the control surface ( )UF  as 
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where S is the surface vector, the spatial approximation of Eq. (24) is 
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where ( ) ji,UD  is an artificial dissipation. It is important to note that Eq. (26) is a spatial approximation of Eq. (24) 
because tensor Π  is considered constant over each of the four control surfaces that define the control volume. 

In order to calculate ( ) ji ,UF , the flux of tensor Π  trough the control surfaces must be calculated. The explicit form 

of this calculation as well as the implementation of the artificial dissipation, ( ) ji,UD , is given by Bobenrieth Miserda 
and Mendonça (2005). For the time marching of Eq. (26), a third-order Runge-Kutta is used as proposed by Shu, Yee 
(1997). This yield to 
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As used in this work, the resulting numerical method is fourth-order accurate in space and third-order accurate in 

time. 
 

4. Results  
 
In order to analyze the effects of the oscillating motion, is realized a study of several cases and for each one of these 

the Mach number is set to 0.2 and the Reynolds number to 100. For the definition of each one of the cases is generated a 
combination of two created key parameters, the vertical velocity of reference and the angular frequency of reference, 
respectively defined as 
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where sω  is the angular frequency related to the simulated vortex-emission frequency of the static circular cylinder at 
the same Mach and Reynolds numbers, represented by the Strouhal number, , in Eq. (30). From previous research, 
the value of this Strouhal number is known to be 0.15. Being so, when the angular frequency of reference is set to one, 
it results in an oscillating motion with a frequency equal to the vortex-emission frequency of the static case. 

St
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Figure 1. Visualizations of the oscillation motion for four different cases: (a) -  set to 1.0 and refV refω  set to 2.0, (b) - 

 and refV refω  set to 2.0, (c) -  and refV refω  set to 3.0, (d) -  set to 3.0 and refV refω  set to 1.0. 
 

Figure (1) shows visualizations of the oscillation motion for four different cases, Fig. (1a) to (1d), at the maximum 
upward velocity instant, the inserted streamline helps at this determination. The plotted variable is the nondimensional 
magnitude of the temperature gradient. In the visualizations, white corresponds to 0 and black corresponds to 0.6. Each 
one of the above visualizations corresponds to one of the four distinct kind of cases studied. Figure (1a) displays a very 
regular and defined Von-Kármán vortex street, showing a periodic and symmetric vortex system topology. In a similar 
way, Fig. (1b) shows a well defined vortex street that looks like the Von-Kármán one, but in this case there is an 
oblique asymmetry between the vortices emitted in the upper and lower position of the cylinder that reveals a periodic 
although anti-symmetric vortex system topology. Different from the first two visualizations, Fig. (1c) and (1d) no 
longer show a well defined vortex street. However, in the visualization displayed in Fig. (1c) is still possible to see 
some periodicity of the vortex-street, revealing a pre-chaotic state of the system. In Fig. (1d) no periodicity is noticeable 
and a much disorganized vortex-street is present, characterizing a chaotic state of the vortex street topology. 

These characteristics can also be appreciated in Fig. (2) that shows the unsteady lift force coefficient as a function 
of time. In Fig. (2) the black signal corresponds to instantaneous values and the gray corresponds to mean values of the 
lift coefficient. Figure (2a) and (2b) shows a very periodic behavior of the instantaneous signal that is directly 
associated with the well defined vortex street of these two particular cases. However, different from Fig. (2a), Figure 
(2b) no longer shows a mean signal floating around zero. This unique characteristic shows that the oblique asymmetry 
of the vortex street, Fig. (1b), generates a non-null resulting lift coefficient over the cylinder’s surface. The 
instantaneous signal of Fig. (2c) shows a non-linear response of the lift coefficient, but still has a slightly periodic 
behavior, showing the transition from a periodic to chaotic state of the system. In Fig. (2d) is displayed the chaotic 
response of the lift coefficient that is associated with a very disorderly vortex-street. 
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Figure 2. Unsteady lift force coefficient as a function of time: (a) -  set to 1.0 and refV refω  set to 2.0, (b) -  and refV refω  

set to 2.0, (c) -  and refV refω  set to 3.0, (d) -  set to 3.0 and refV refω  set to 1.0. 
 

Figure (3) shows the phase diagram for the unsteady lift coefficient. The phase path in the diagram of Fig. (3a) and 
in the one of Fig (3b) are very well defined as a consequence of a very well behavior of the system. In Fig. (3b) is also 
noticeable the presence of a non-null lift coefficient as the phase diagram is not centered at 0, in the horizontal axis. In 
Fig. (3c) is observed a intense deviation of the phase paths occasioned by the temporal variation of the maximum and 
minimum  values of the lift coefficient, but is not entirely disorganized, emphasizing the transition from a periodic state 
to a chaotic one. Figure (3d) shows a phase diagram, in which the phase path follows no pattern and reveals the 
completely disorderly state of the system. 
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Figure 3. Phase diagram for the unsteady lift coefficient: (a) -  set to 1.0 and refV refω  set to 2.0, (b) -  and refV refω  set 

to 2.0, (c) -  and refV refω  set to 3.0, (d) -  set to 3.0 and refV refω  set to 1.0 
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The power spectrums for the unsteady lift coefficient of the four cases focused in the present work are showed in 
Fig. (4). The power spectrum of the first two cases, Fig. (4a) and (4b), shows only the fundamental frequency associated 
with low energy sub-harmonics. On the other hand, for the last two, Fig. (4c) and (4d), the spectrum is broader close to 
the fundamental frequency, becoming impossible to make a precise definition of sub-harmonics. This particular 
characteristic is caused by the non-linearity of the system in the two cases corresponding to Fig. (4c) and (4d). 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

PL

St

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
10-2

10-1

100

101

102

103

104

PL

St

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-4

10-3

10-2

10-1

100

101

102

103

104

105

PL

St

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10-3

10-2

10-1

100

101

102

103

104

PL

St

(d)

 
 

Figure 4. Power spectrum for the unsteady lift coefficient: (a) -  set to 1.0 and refV refω  set to 2.0, (b) -  and refV refω  set 

to 2.0, (c) -  and refV refω  set to 3.0, (d) -  set to 3.0 and refV refω  set to 1.0 
 

Figure (5) shows a classification of all the studied cases, based on each one’s vortex system topology (symmetric 
and anti-symmetric) and phase behavior of the unsteady lift coefficient (periodic, pre-chaotic and chaotic). These 
criteria results in four groups, namely the periodic and symmetric, periodic and anti-symmetric, pre-chaotic and chaotic 
cases.  In this figure four linking lines are also shown. The first (horizontal) line links the cases where 1.0refV = . The 

second (vertical) line links the cases where 1.0refω = , and the third (oblique, with a 45º inclination) line, links the 
cases where the amplitude of motion is held constant. The fourth (oblique, with a 135º inclination) line links the cases 
that are orthogonal to the previous line. These cases were studied in order to define the local limit of the periodic and 
anti-symmetric behavior. 
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Figure 5. Classification of the cases studied, based on the topology of the vortex wake (symmetric and anti-symmetric) 
and the phase behavior of the unsteady lift coefficient (periodic, pre-chaotic and chaotic). 
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As we advance from the first case ( 0.0refω = ) to the last one over the first (horizontal) line ( 6.0refω = ), the 

system becomes more periodic and symmetric, except the case 1.0refω = , where the system shows itself to be periodic 

and anti-symmetric, and the case 0.5refω = , where the system has a chaotic behavior. This growing periodicity of the 
system is due to the fact that the system approaches a quasi-static situation, as the oscillation frequencies become higher 
than the static vortex-emission frequency. These high frequencies are also associated to very small amplitudes of 
motion. 

Figure (5) also shows the higher sensibility to changes into the maximum linear velocity of oscillation when 
compared to changes into the angular frequency of oscillation. This higher sensibility is due to the fact that a small 
increment of 1.0 in , when refV refω remains constant, results in the completely disorganization of the system, the system 

moves from a periodic state to a chaotic one. In contrast, an increment of 6.0 in refω , when  remains constant, not 
only keeps the system stable and periodic, but also makes the system even more stable as it moves forward a quasi-
static situation. 

refV

 
5.Conclusions  

 
In the present work is proposed a methodology, used to simulate the laminar flow over a normally oscillating 

circular cylinder, created by the insertion of pseudo-force and pseudo-work terms to the momentum and energy 
equations, respectively, to solve the system of governing equations from a non-inertial frame of reference fixed at the 
cylinder., as proposed by Bobenrieth Miserda e Mendonça (2005). In order to analyze the effects of the oscillating 
motion, two key parameters,  and refV refω , were created, and different combination of these two parameters resulted 
into four groups of cases: Periodic and symmetric, Periodic and anti-symmetric, Pre-chaotic and Chaotic. 

The cases with a periodic and symmetric behavior, concentrated over the line in which refω  is constant and equal to 
1.0, showed a very well define vortex-street associated with a signal of the unsteady lift coefficient that has a periodic 
and quasi-linear behavior resulting in a phase diagram with a well define phase path and a power spectrum, that shows, 
with definition, the fundamental frequency of the related case and sub-harmonics of low energy. Similar to these cases, 
the ones with a Periodic and anti-symmetric behavior, also showed a well defined vortex-street associated with a 
periodic and quasi-linear signal of the unsteady lift coefficient. However, the vortex-street topology revealed an oblique 
asymmetry that resulted into a non-null lift coefficient over the cylinder’s surface. 

On the other hand, the cases with a pre-chaotic behavior, although showed a slightly periodicity, were in a 
transition state between periodic and chaotic, showing a complex vortex-street, as theirs phase diagram displayed phase 
paths with great deviation, but they still seemed to follow a certain pattern, and their power spectrum no longer showed, 
with clear definition, the fundamental frequency and sub-harmonics. The chaotic cases no longer showed any periodic 
behavior of the unsteady lift coefficient signal associated with a complex and disorderly vortex street that resulted in a 
phase diagram without any pattern and a power spectrum that also makes impossible to clearly define the fundamental 
frequency and sub-harmonics. 

The system also showed a higher sensibility to changes into the maximum linear velocity of oscillation when 
compared to changes into the angular frequency of oscillation. This emphasizes the importance of the maximum 
velocity of oscillation and the maximum amplitude of oscillation as they showed to be critical parameters. Any small 
increment of these parameters, at a fixed frequency of oscillation, can bring serious structure damage as they rapidly 
remove the system stability. 
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